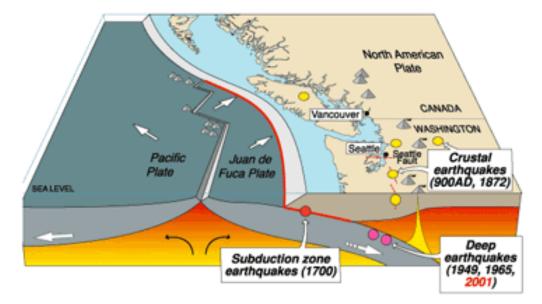

Reliability-based dynamic analyses for seismic design optimization in British Columbia

by G. Wu, Ph.D., P. Eng.

BC Hydro & Wutec Geotechnical International

A Presentation on 27th Vancouver Geotechnical Society Symposium on Risk and Liability, BC, Canada



Earthquakes in Southwest BC:

Two earthquake sources with large difference in magnitude:

- M~9 for subduction Interface
- M~7 for Crustal and subduction Intra Slab (InSlab)

Cascadia earthquake sources

Outline

Reliability-based dynamic analyses for seismic design optimization in British Columbia

- 1. GSC (2015) 5th Generation Seismic Hazard Model for Probability Seismic Hazard Analysis (PSHA)
 - Seismic slope displacements from empirical equations for M9 and M7 earthquakes
- 2. Seismic Site Response and Liquefaction Analyses for a Soil Profile at Roberts Bank Port: PSPA Method
- 3. Reliability Based Soil Liquefaction Analyses Of the Soil Profile
- 4. Conclusion Remarks

Reference:

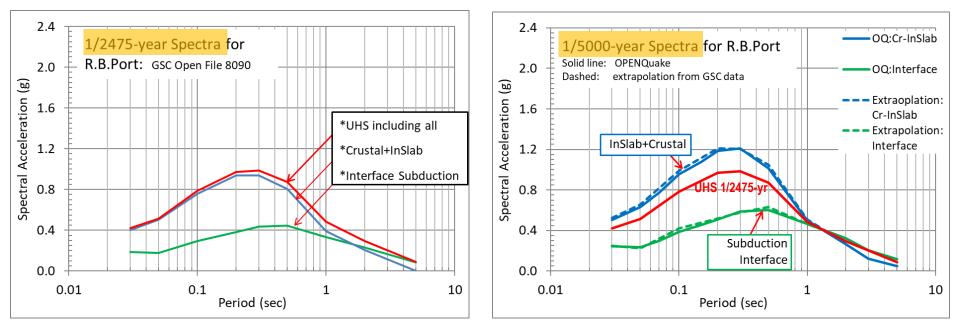
3

- Wu, G. 2017. Probability approach to GSC 2015 seismic hazard including crustal and subduction earthquake sources, VGS presentation in November 2017. <u>http://v-g-s.ca/20172018-lecture-series</u>
- o Wu G. 2018 Probabilistic Approach to Design of Seismic Upgrade to Withstand both Crustal and Subduction

Earthquake Sources, 2018 VGS Symposium http://v-g-s.ca/2018-proceedings

27th VGS Symposium 2021.5.28 by G Wu Part 1 -Preface

GSC (2015) fifth generation seismic hazard model: (Open File 8090 with 13148 pts)


Roberts Bank Port, GSC Borehole FD95-S1 (150 m deep)

4 27th VGS Symposium 2021.5.28 by G Wu Part 2 -GSC 2015 Model & Seismic Slope Displacement BC Hydro Power smart

Spectra for 1/5000-yr Level (1%/50 years) and 10,000-yr when required, extrapolation vs. OpenQuake

GSC Grid pt. 34101 near the Roberts Bank Port

- Spectra for Subduction Interface (M9) Green
- Spectra for Non-Interface (i.e., Crustal + InSlab) –Blue
- Total combined all source Uniform Hazard spectra (UHS) Red

5 27th VGS Symposium 2021.5.28 by G Wu Part 2 -GSC 2015 Model & Seismic Slope Displacement

PSPA Approach:

Probabilistic Seismic Performance Analyses

For example, to determine seismic displacement of a slope, say at 1/2475-yr level:

- Do not use all-source UHS 1/2475-yr: there is no applicable equations
- Use Mecedo et al (2017) Equation for ~M9 Interface at 1/2475-yr & 1/5000-yr

• **D** (cm)
$$_{\sim M9}$$
 for Ts>0.05 s $Ln(D) = -6.97 - 3.045Ln(k_y) - 0.328(Ln(k_y))^2 + 0.448Ln(k_y)Ln(Sa(1.5T_s)) + 2.605Ln(Sa(1.5T_s)) - 0.233(Ln(Sa(1.5T_s)))^2 + 1.407T_s + 0.643M \pm \varepsilon$

(4)

Use Bray and Mecedo (2019) updated from 2007 for ~M7 non-Interface earthquakes:

• **D** (cm)
$$_{\text{-M7}}$$
 (a1, a2, a3 are constants):

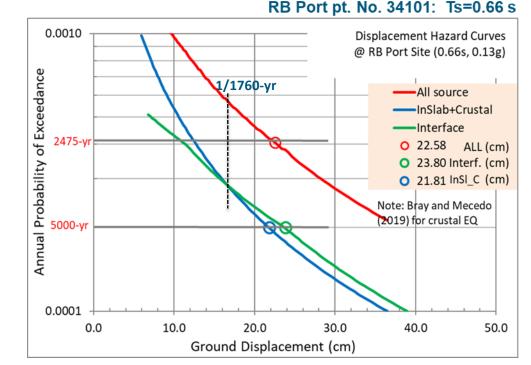
$$Ln(D) = a1 - 2.482Ln(k_y) - 0.244(Ln(k_y))^2 + 0.344Ln(k_y)Ln(S_a(1.3T_s)) + 2.649Ln(S_a(1.3T_s))) - 0.090(Ln(S_a(1.3T_s)))^2 + a2T_s + a3(T_s)^2 + 0.603M_w \pm \varepsilon_1$$
(3a)

- D (cm)_{M9+M7} using the PSPA approach, i.e., adding probability for D(cm)_{~M9} and for D(cm)_{~M7}
 - D (cm) _{M9+M7} = D(cm)_{~M9} = D(cm)_{~M7}
 - Probability: $P_{M9+M7} = P_{-M9} + P_{-M7}$
 - For 1/2475-yr displacement: annual P = 1/2475 = 0.000404

•

Seismic Slope Displacements for a Probability of 2%/50 years

Legend:


7

Red - All source Green – Interface ~M9 Blue – InSlab/Crustal ~M7

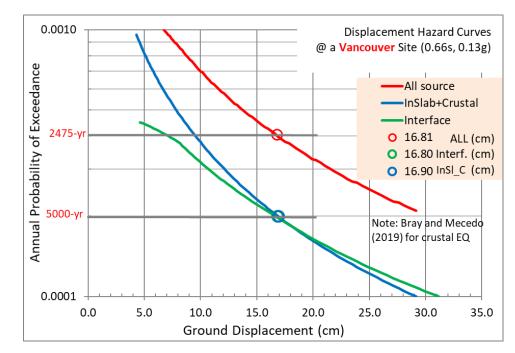
At 22.58 cm: $P_{red} = P_{blue} + P_{green}$ = 0.00019 + 0.00021 =0.000400

Note: blue and green lines cross at: P_{blue}= P_{green}=0.000284 P_{red}=0.000568

27th VGS Symposium 2021.5.28 by G Wu Part 2 -GSC 2015 Model & Seismic Slope Displacement

Observations:

D(cm)_{~M7} ≈ D(cm) _{M9+M7} ≈ D(cm)_{~M9}


At D = 22.58 cm

- P_{~M7} ≈ 0.5 * P_{M9+M7}
- P_{~M9} ≈ 0.5 * P_{M9+M7}

Note: For 1/1760-yr, "≈" becomes "="

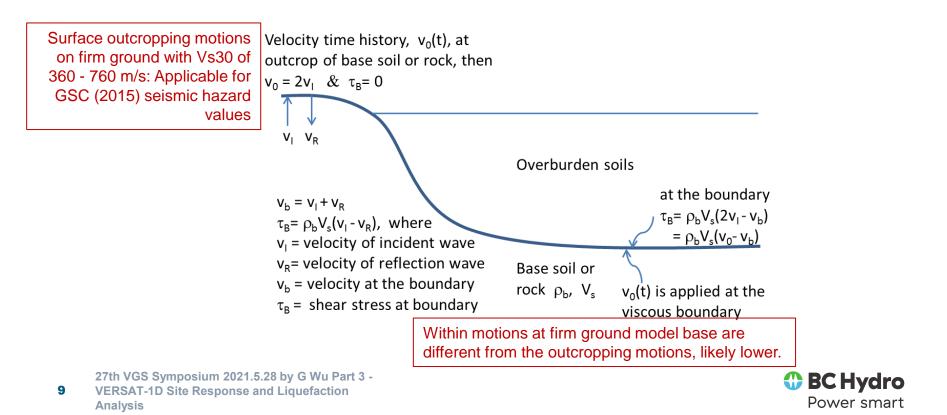
Seismic Slope Displacements for a Probability of 2%/50 years

Observations:

D(cm)_{~M7} ≈ D(cm) _{M9+M7} ≈ D(cm)_{~M9}

At D = 16.81 cm

- P_{~M7} ≈ 0.5 * P_{M9+M7}
- P_{~M9} ≈ 0.5 * P_{M9+M7}

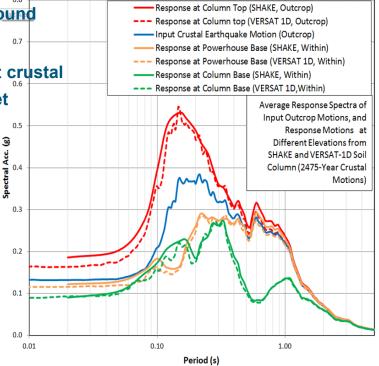

For Vancouver site: "≈" becomes "=" at 1/2475-yr

Power smart

8 27th VGS Symposium 2021.5.28 by G Wu Part 2 -GSC 2015 Model & Seismic Slope Displacement

VERSAT dynamic analyses (1D & 2D) with elastic base

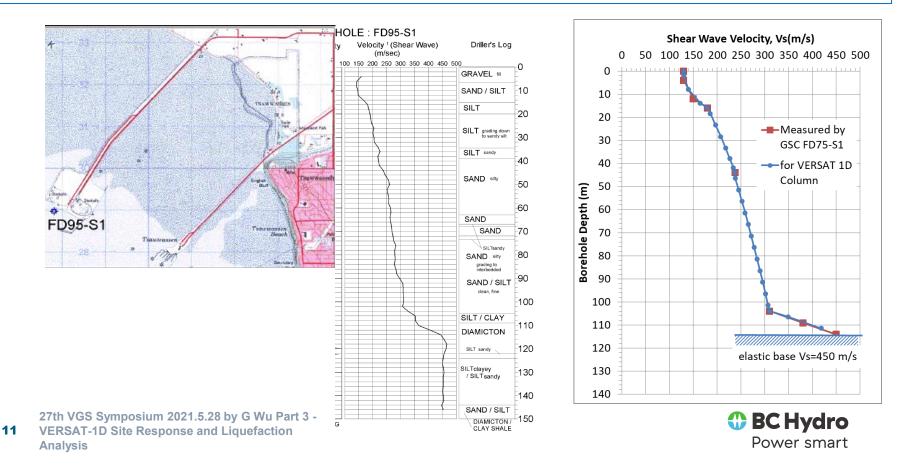
- VERSAT dynamic analyses (1D & 2D) with elastic base (or compliance base, or viscous base boundary) by applying Outcropping Velocity Time History (TH) as Input ground motion.
- Figure 8 the elastic base model with a viscous boundary in VERSAT technical manual (2019)

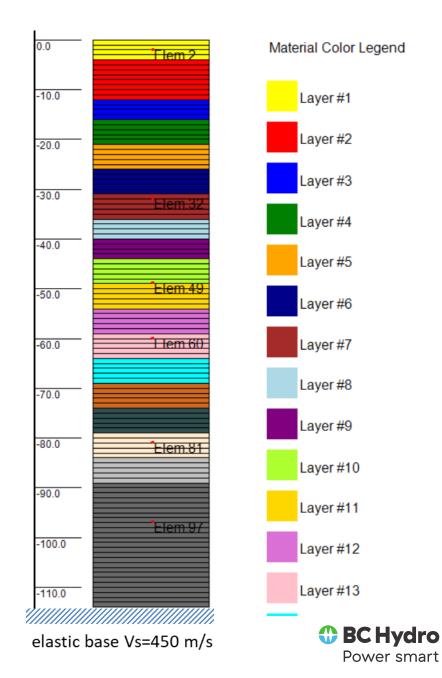

VERSAT dynamic analyses (1D & 2D) with elastic base

Comparison SHAKE & VERSAT Results:

- For ground motion response of site with an elastic base
- A site near Bridge River BC where firm ground was modelled at 50 m depth with V_s=450 m/s
- Low-median level of earthquake shaking with firm-ground outcrop PGA of 0.14 g
- Spectra shown in the graph are average using 7 input crustal earthquake motions, linearly scaled to the same target spectrum.

Summary: Results from VERSAT and SHAKE agreed very well, for motions both at the base and at top of the 50 m thick soil column

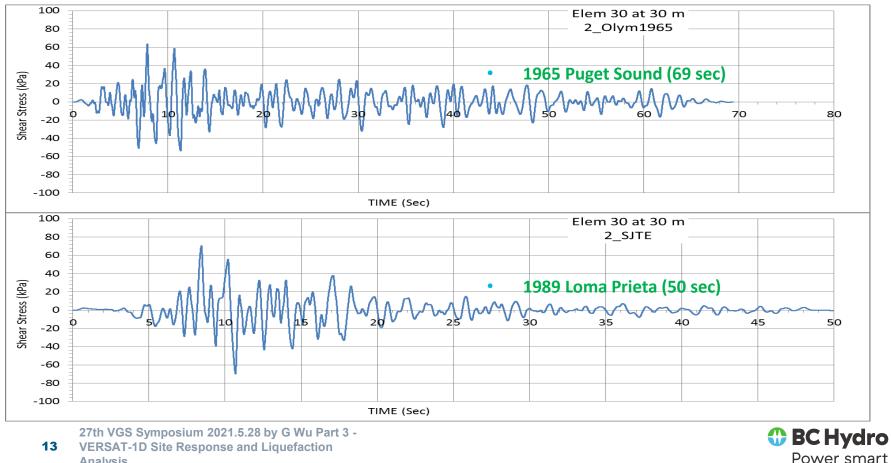

Reference: VERSAT technical manual


Site Response Analyses: VERSAT 1D Soil Model

Example location at Roberts Bank Port GSC Borehole FD95-S1 (150 m deep), near Grid Point No.
 34101 (49.08 N; -123.264W). Shear wave velocity and soil stratigraphy at FD95-S1 were used.

Site Response Analyses: VERSAT 1D Soil Model

- Using nonlinear finite element time history analyses (VERSAT-1D, Wutec 2019)
- VERSAT 1D Soil Model: 23 layers used in the model for a total of 114 soil elements (1 m thick each); elastic base with V_s=450 m/s; outcropping velocity TH applied to the model

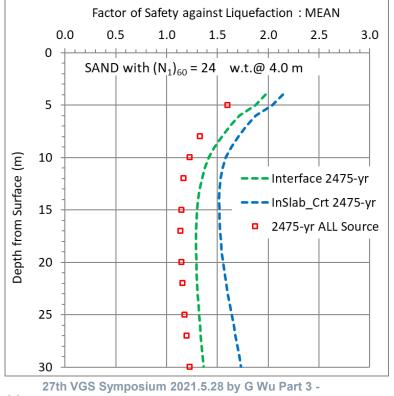


Site Response **Analyses: VERSAT 1D Soil Model**

VERSAT 1D Results:

- **Cyclic Shear Stress Model for Liquefaction**
- Shear stress THs for Elem-30 at 29.5 m depth (2475-yr,

InSlab/Crustal)

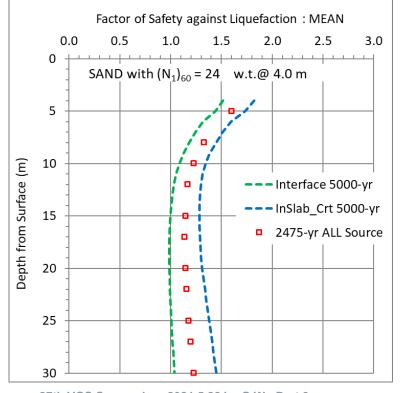


Analysis

Factors of Safety (FoS) against liquefaction Deterministic analysis assuming N_{1.60}=24

Result 1/2475-yr (Wu 2017)

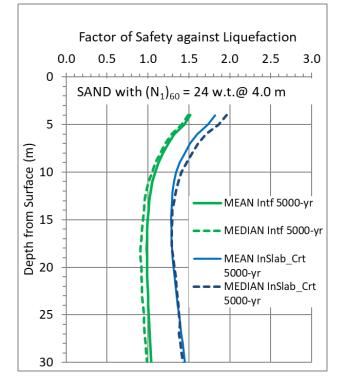
- using 11 EQ records for each EQ source
- Method B "all Cumulated" for 1/2475-yr all source



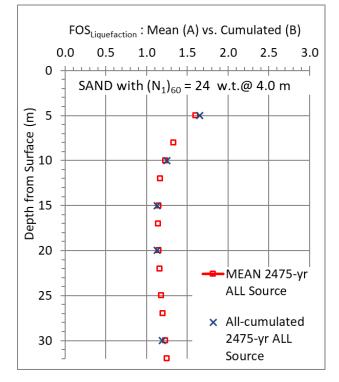
Factors of Safety (FoS) against liquefaction Deterministic analysis assuming N_{1.60}=24

Result 1/5000-yr (Wu 2017)

- using 11 EQ records for each EQ source
- Method B "all Cumulated" for 1/2475-yr all source



Factors of Safety (FoS) against liquefaction Deterministic analysis assuming N_{1.60}=24


1/5000-yr: Mean vs. Median (Wu 2017)

- using 11 EQ records for each EQ source

Method A vs. Method B (Wu 2017)

using 11 EQ records for each EQ source

PSPA for displacements, FS_{liq}, or any quantities Probability of 2%/50-yr

 $= P_{-M7} + 0$; where no contribution from M9 (in Calgary, etc)

 $= 0 + P_{-M9}$; where no/little contribution from M7 (in Pacific Ocean)

Probability P_{M9+M7}

 $= P_{-M7} + P_{-M9}$; In the lower Mainland, near half-half each

In the Lower Mainland for 1/2475-yr: $1 \neq 1 + 1$; 1 = 0.5 + 0.5Therefore, 1/5000-yr for each EQ source is a good bet to start.

27th VGS Symposium 2021.5.28 by G Wu Part 3 -VERSAT-1D Site Response and Liquefaction Analysis

<u>Reliability of soil against liquefaction</u> = 1 - P_f

A). Sampling method, a Monte Carlo simulation (10⁶ samples)

B). Approximate algorithms, FORM, SORM (Foschi et al 2017)

A). Sampling method: $P_f = \frac{N_f}{N}$

Reliability

- A subject (or system) is comprised of one or many stochastic (or random) variables.
- Each variable (or each collection of variables) has its own statistical distribution.
- N_f = number of failed samples
- N = number of total sample; N = 3465 samples in this study
- In this study, failed sample means: $FS_{liq} \le 1.0$ (i.e., $crr_{15} \le csr_{15}$)

<u>Reliability of soil against liquefaction</u> = 1 - P_f

A). Sampling method, a Monte Carlo simulation (10⁶ samples)

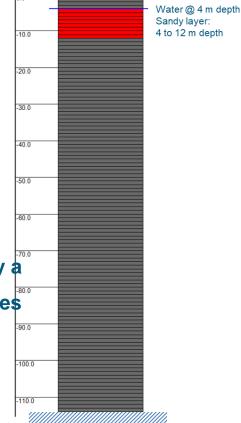
B). Approximate algorithms, FORM, SORM (Foschi et al 2017)

A). continued...

Reliability

- Sampling method: $\beta = (\mu_{FS} 1) / \sigma$
- where μ_{FS} is the mean of subject samples (i.e., average of the 3465 samples)
- σ is the standard deviation of the 3465 samples.
- **B). First Order Reliability Method (**FORM): Reliability index (β): P_f = Φ (- β) where Φ is the standard normal distribution function

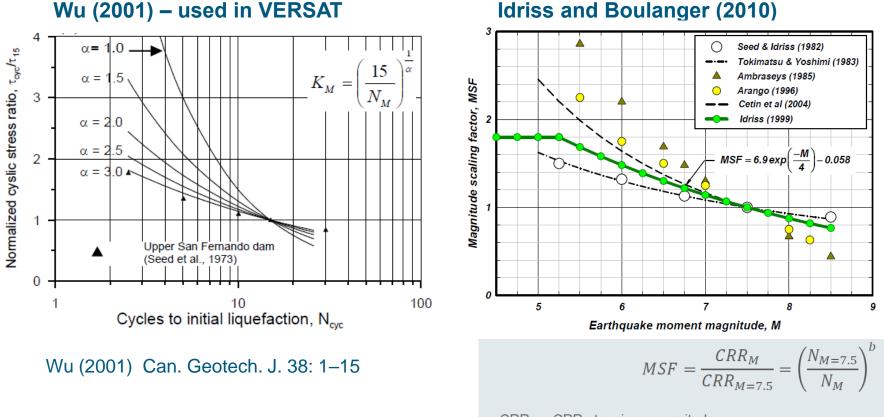
- sandy layer from 5 to 12 m depth under 1/5000-yr non-Interface ground motions


Method B). FORM (Foschi 2011; Foschi et al. 2017)

Performance function <u>**G**</u> = **Capacity** – **Load**

 $G = crr_{15}(N_{1 \ 60}, CRR_{15}, K_{\sigma}) - csr_{15}(V_{s}, record, \alpha)$

Where,


- crr_{15} cyclic shear stress ratio (over at-depth σ_v ') to cause liquefaction in 15 cycles
- csr_{15} cyclic shear stress ratio (over at-depth σ_v ') caused by a earthquake ground motion (the record), corrected to 15 cycles
- Stochastic variables: EQ record, α, N_{1_60}, CRR₁₅
- Deterministic variables: V_s , K_σ
- Conventional FS_{liq} = crr₁₅ / csr₁₅

elastic base Vs=450 m/s

LOAD side: Earthquake magnitude correction: α factor

- CRR_M = CRR at a given magnitude
- $CRR_{M} = 7.5 = CRR$ at M=7.5
- $N_{M=7.5}$ = number of uniform cycles for M = 7.5
- N_M = number of uniform cycles for a given magnitude
- b = fitting parameter

BC Hydro Power smart

LOAD side: Earthquake ground motions

1). K_M (or MSF) factors applied in probability analysis with unequal weight

	Fitting parameter	Cetin et al. 2004	ldriss 1999	Seed and Idriss, 1982
VERSAT-1D, 2D (Wu 2001)	α	2.0	2.85	3.6
Idriss and Boulanger (2010)	b	0.5	0.35	0.28
Probability	0.3	0.4	0.3	

Note: VERSAT $\alpha = \frac{1}{b}$

2). 21 EQ records with an equal weight (Σ =1.0)

Record #	Short name	Probability Weight	Record #	Short name	Probability Weight	Record #	Short name	Probability Weight
1	c-Abbar	0.0476	8	c-LDM	0.0476	15	c-UCSC	0.0476
2	c-CHL	0.0476	9	c-PUL	0.0476	16	c-Yoita	0.0476
3	c-CPE	0.0476	10	c-SJTE	0.0476	17	s-Gigh	0.0476
4	c-Dayhook	0.0476	11	c-SSU	0.0476	18	s-Myg13	0.0476
5	c-IZT	0.0476	12	c-TAB	0.0476	19	s-Olym1949	0.0476
6	c-K-Nish	0.0476	13	c-TCU071	0.0476	20	s-Olym1965	0.0476
7	c-Lamont	0.0476	14	c-TCU129	0.0476	21	s-Olym2001	0.0476

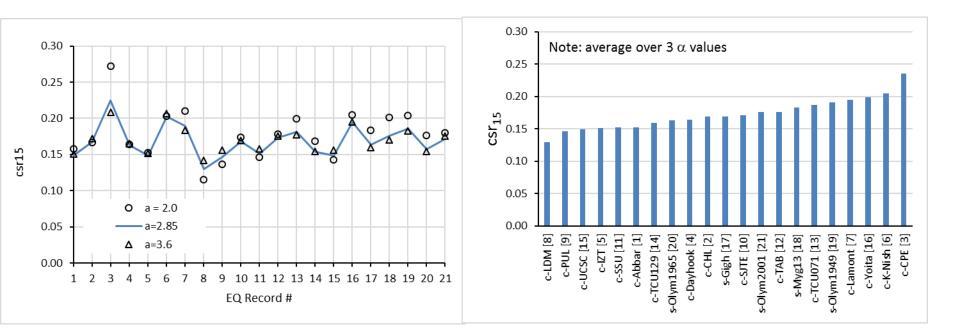
Note: c - crustal EQ record, s - InSlab EQ record

LOAD side input: 21 Ground Motion records scaled for 1/5000-yr Non-Interface spectra (PGA=0.523 g)

• 16 Crustal EQ records: AVG PGA = 1.29*0.434 = 0.560 g

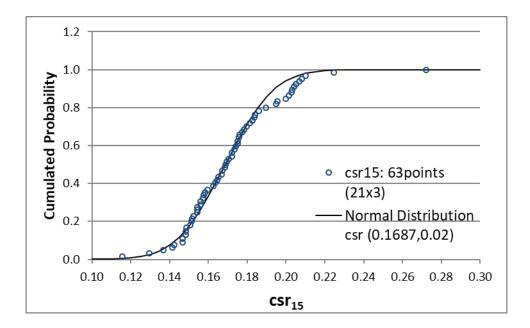
• 5 InSlab EQ Records: AVG PGA= 1.29*0.430= 0.555 g

Ground Motions Linearly Scaled for GSC (2015) 2475-yr InSlab/Crustal and Subduction Interface Spectra for R.B. Port - pt. 34101 (A scale factor of 1.29 is further applied to below table for the 5000-yr ground motions)


	Earth	iquake		Recording	N	dt	Duration	PGA	PGV	PGD	Arias Int.	5%-95%
Set	Name	Date	Magnitude	Station	points	[sec]	(sec)	[g]	[m/s]	[m]	[m/s]	[sec]
Crustal G	round Motions							0.434				
1	Manjil, Iran	6/20/1990	7.37	Abbar	2300	0.02	46.0	0.391	0.415	0.188	4.7	29.08
2	Northridge, CA	17-Jan-1994	6.69	CHL Chalon Rd	3107	0.01	31.1	0.354	0.315	0.060	1.7	9.0
3	Imperial Valley, CA	15-Oct-1979	6.5	CPE_Cerro Priet	6382	0.01	63.8	0.364	0.25	0.113	5.7	30.0
4	Tabas, Iran	16-Sep-1978	7.35	Dayhook	1050	0.02	21.0	0.495	0.343	0.228	3.4	11.34
5	Turkey, Kocaeli	17-Aug-1999	7.51	Izmit	3000	0.01	30.0	0.342	0.574	0.358	1.8	13.3
6	Chuetsu-oki, Japan	16-Jul-2007	6.8	K.Nishiyamacho	6000	0.01	60.0	0.426	0.368	0.065	2.1	11.19
7	Duzce, Turkey	12-Nov-1999	7.14	Lamont 531	4150	0.01	41.5	0.312	0.339	0.200	2.6	14.89
8	Northridge, CA	17-Jan-1994	6.69	LA Dam	2658	0.01	26.6	0.317	0.469	0.239	1.3	6.5
9	San Fernando, CA	24-May-1905	6.61	PUL Pacoima Da	4172	0.01	41.7	0.620	0.288	0.064	2.0	7.26
10	Loma Prieta, CA	18-Oct-1989	6.93	SJTE Santa Teres	4999	0.01	50.0	0.479	0.493	0.404	4.0	10.1
11	Northridge, CA	17-Jan-1994	6.69	SSU Santa Susan	5725	0.01	57.3	0.373	0.257	0.103	2.2	7.36
12	Iran, Tabas	16-Sep-1978	7.35	TABas	1650	0.02	33.0	0.386	0.447	0.174	2.4	16.5
13	Chi-Chi, Taiwan	20-Sep-1999	7.62	TCU071	5040	0.01	50.4	0.323	0.279	0.094	3.4	24.0
14	Chi-Chi, Taiwan	20-Sep-1999	7.62	TCU129	7798	0.01	78.0	0.582	0.364	0.365	3.1	27.34
15	Loma Prieta, CA	18-Oct-1989	6.93	UCSC	2501	0.01	25.0	0.862	0.281	0.049	7.1	8.58
16	Chuetsu-oki, Japan	16-Jul-2007	6.8	Yoitamachi Yoita	6000	0.01	60.0	0.311	0.337	0.077	2.3	15.79
InSlab Gr	ound Motions							0.430				
17	Washington Nisqually	28-Feb-2001	6.8	Gig Harbour, Fire Station	9900	0.01	99.0	0.348	0.323	0.136	2.4	23.5
18	Japan MiyagiOki	16-Aug-2005	7.2	MYG013	7992	0.01	79.9	0.575	0.415	0.049	5.6	21.5
19	Western Washington	13-Apr-1949	6.9	Olympia_1949 Highway Lab	7532	0.01	75.3	0.351	0.385	0.126	3.1	19.2
20	Washington Puget Sou	29-Apr-1965	6.7	Olym1965 Highway Lab	6939	0.01	69.4	0.519	0.319	0.114	3.0	20.8
21	Washington, Nisqually	28-Feb-2001	6.8	Olym2001 Highway Lab	8294	0.01	82.9	0.355	0.296	0.065	1.9	16.5

23 27th VGS Symposium 2021.5.28 by G Wu Part 4 -Reliability of Soils against Lquefaction

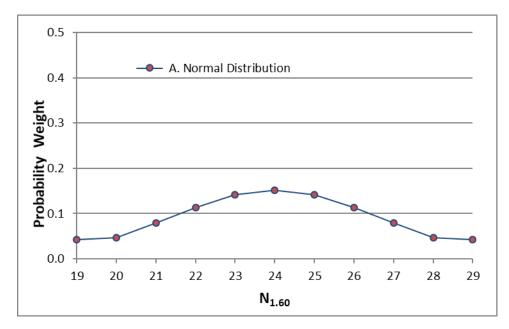
LOAD side output: csr₁₅ (11.5 m depth) results from VERSAT : 21 records x 3 = 63


- Record #3 CPE gives the highest csr₁₅ among the 21 records
- Record #8 LA Dam gives the lowest csr₁₅
- On average, α = 2.0 gives higher csr₁₅ than α =2.85 or 3.6

LOAD side: csr₁₅ probability density function (PDF)

- csr₁₅ distribution fits well in a normal distribution
- At 11.5 m depth, csr_{15} normal distribution line: μ_{csr15} = 0.1687 and σ = 0.020

Figure A: csr₁₅ Cumulative Probability Distribution Function (CDF)

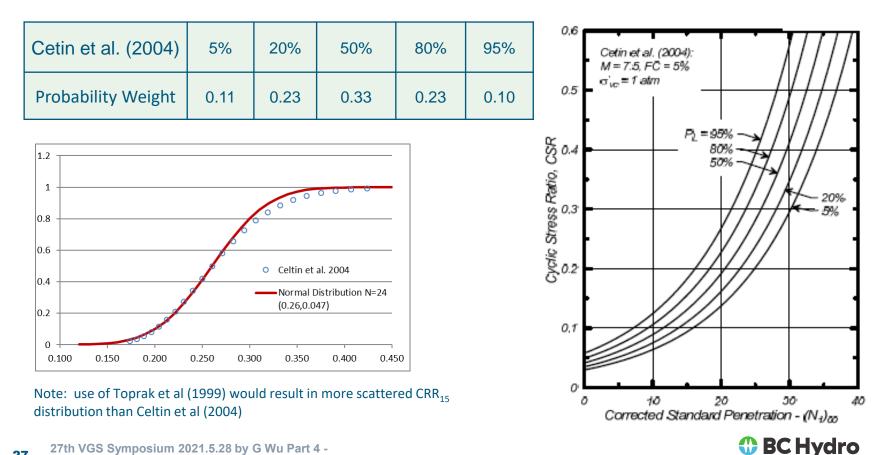


CAPACITY: N_{1.60} data for sandy layer (4 to 12 m depth)

- N_{1.60} normal distribution centered at N_{1.60} = 24
- $N_{1.60}$ probability weight below (total Σ =1.0)

Disclaim: Purely Assumed. Don't Use It in design works!

N _{1.60}	19	20	21	22	23	24	25	26	27	28	29	Σ
A. Normal Distribution	0.042	0.047	0.079	0.114	0.142	0.152	0.142	0.114	0.079	0.047	0.042	<u>1.00</u>



CAPACITY: crr₁₅ for sandy layers: 4 to 12 m depth

Disclaim: Purely Assumed. Don't Use It in design works!

Power smart

- For each N_{1.60,} applying Cetin et al (2004) probabilistic correlation of CRR₁₅ with N_{1.60}
- For $N_{1.60}$ = 24, CRR₁₅ normal distribution is centered at 0.26 with σ = 0.047

CAPACITY: crr₁₅ probability density function (PDF)

- crr₁₅ distribution fits well in a normal distribution
- At 11.5 m depth, crr_{15} normal distribution line: μ_{crr15} = 0.2395 and σ = 0.066 (Set-A)

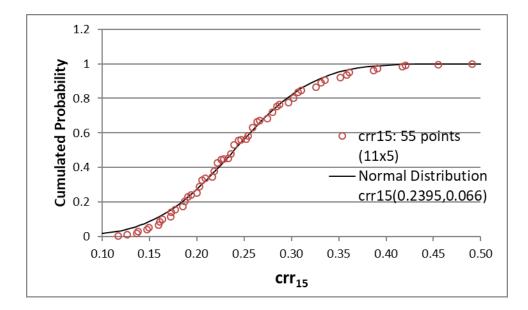


Figure B: crr₁₅ Cumulative Probability Distribution Function (CDF)

CAPACITY – Load:

crr₁₅ – csr₁₅ Probability Density Function (PDF)

- csr₁₅ by using the 21 EQ records are less scattered (less deviation, low σ) than crr₁₅
- crr₁₅ for liquefaction resistance has more deviation and high σ ; curve is wider and flatter
- Both crr₁₅ and csr₁₅ can be characterized using a normal distribution

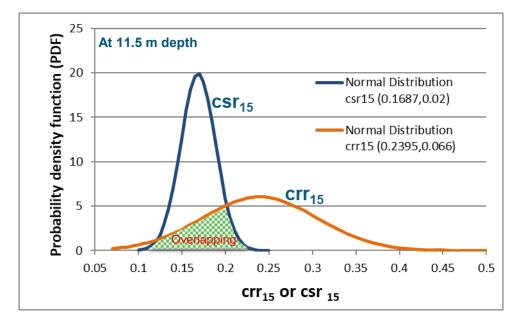


Figure C: crr₁₅ and csr₁₅ Probability Density Function (PDF)

Method B). First Order Reliability Method (FORM) (Rackwitz 1978; Fosci 2011; Fosci et al. 2017)

- using the Lines in Figure A and Figure B

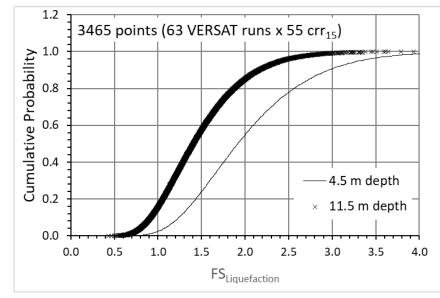
$$\beta = \frac{\mu_{crr15} - \mu_{csr15}}{\sqrt{\sigma_{crr15}^2 + \sigma_{csr15}^2}}$$

Where at 11.5 m depth

- \circ μ_{crr15} w. mean (= median) of the crr₁₅ distribution, 0.2395
- μ_{csr15} w. mean (= median) of the csr₁₅ distribution, 0.1687
- \circ σ_{crr15} standard deviation of the crr₁₅ distribution, 0.066
- \circ σ_{csr15} standard deviation of the csr₁₅ distribution, 0.020

i.e.

 $\sigma_{\rm G} = 0.069$


β = **1.026**

$$P_{f} = 0.152$$

Method A). Sampling method

- using the data points in Figure A and Figure B
- No correlation between crr_{15} and csr_{15} : Coefficient of Variation COV = 0
- VERSAT-1D site response runs: 21 records x 3 α factors (63 samples of LOAD)
- Soil (4 to 12 m depth) $N_{1 60}$ & CRR₁₅ combinations: 11 x 5 (55 samples of CAPACITY)
- Total # of samples: 63 x 55 = 3465 (no need to run 3465 VERSAT analyses since COV=0)

Soil Depth	4.5 m	11.5 m
w. Median Fs _{liq}	1.92	1.40
w. Mean, μ_{FS}	2.03	1.48
S. deviation, σ	0.69	0.50
Reliability $\boldsymbol{\beta}$	1.49	0.97
$P_f = \frac{N_f}{N}$	0.024	0.157

Note: $\beta = (\mu_{FS} - 1) / \sigma$

31 27th VGS Symposium 2021.5.28 by G Wu Part 4 - Reliability of Soils against Lquefaction

Deterministic Approach

for $N_{1.60} = 24$ with CRR₁₅=0.26 Equation: $30 / V_{s30} = \Sigma H(i) / V_s(i)$ see Table PGA at Class C site surface: 0.523g for 1/5000-yr Non-interface PGA at (R.B. Port) Class E site surface: $a_{max} = 0.387g$ At 11.5 m (7.5 m below water): σ_v '=140.9 kPa, σ_v =214.5 kPa

 $CSR_{M,\sigma'_{v}} = 0.65 \frac{\sigma_{v}}{\sigma'_{v}} \frac{a_{\max}}{g} r_{d}$

$$csr_{15} = csr_{M7.5} = csr_{M7.0} / K_M$$
 (i.e., earthquake M=7.0)

crr ₁₅ =	CRR ₁₅	*	$\mathbf{K}_{\mathbf{\sigma}}$
----------------------------	-------------------	---	--------------------------------

⁽¹⁾ w. Average =0.1722

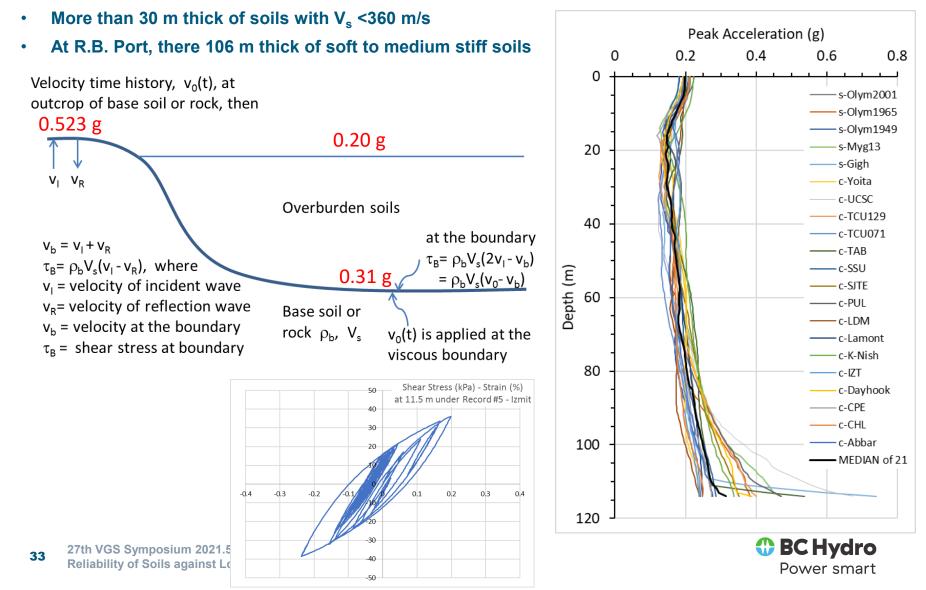
⁽²⁾ w. Average =0.1370

$\operatorname{crr}_{15} = \operatorname{CRR}_{15} * \operatorname{K}_{\sigma}$	Quantity	Assuming	Class E site	VERSAT	@ depth
	Quantity	11.5 m	4.5 m	11.5 m	4.5 m
	a _{max}	0.387	0.387	-	-
	r _d	0.835	0.954	-	-
	csr _M	0.3198	0.2553	-	-
	csr ₁₅	0.2752	0.2197	0.1687 ⁽¹⁾	0.1342 ⁽²⁾
	Κ _σ	0.921	1.000	0.921	1.0
⁾ w. Average =0.1722 ⁾ w. Average =0.1370	crr ₁₅	0.2394	0.2600	0.2395	0.26
w. median used in Table	FS _{lig}	0.87	1.18	1.420	1.937

31 V _{s30} =	208 163	5	0.0247	
26	197	5	0.0273 0.0261	
21	186	5		
16	180	4	0.0242	
12	150	8	0.0571	
4	130	4	0.0308	
0	130	(,	clupe e (o)	
VERAST-1D Depth	Vs (m/s)	H (m)	elape t (s)	

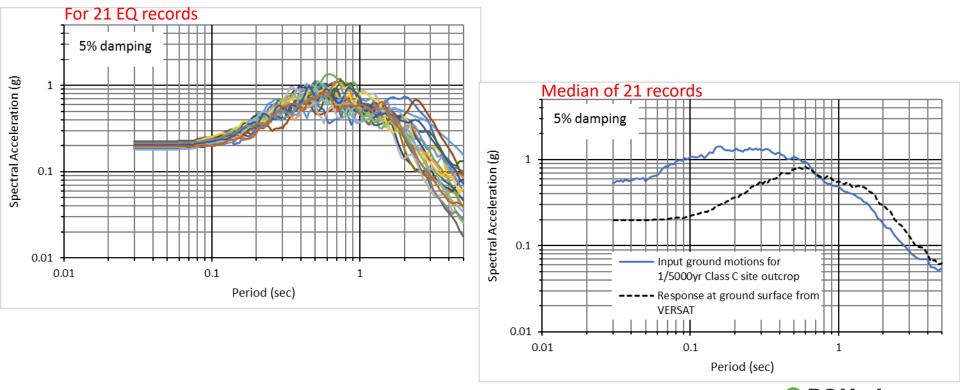
	Cetin et	Idriss,	Seed and
Method	al., 2004	1999	Idriss, 1982
K _M	1.22	1.15	1.12
Weight	0.3	0.4	0.3

Weighted average, $K_{M} = 1.16$


Comparing results:

- Large difference FS_{lig}=1.42 by VERSAT
- FS_{lig}= 0.87 for Class E site. Why? Because
- this is a Class F site and requires dynamic analysis !

27th VGS Symposium 2021.5.28 by G Wu Part 4 -32 **Reliability of Soils against Lquefaction**


Class F Site:

Ground surface spectral accelerations from the 21 Records

A large reduction in a_{max} at a site, due to:

- Firm ground (V_s > 360 m/s) encountered at a great depth, i.e., 114 m for RB Port site
- General soft soils with a long period, T₁= 0.62 sec

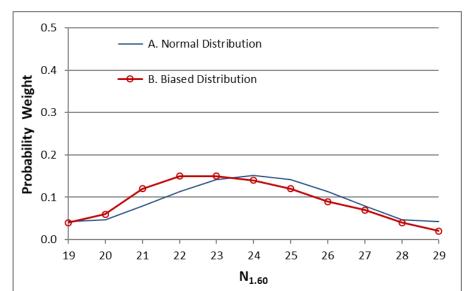
34 27th VGS Symposium 2021.5.28 by G Wu Part 4 - Reliability of Soils against Lquefaction

BC Hydro Power smart

Soil depth	VERSAT	Reliability Method					
at 11.5 m	N _{1.60} =24	Sampling	FORM				
Median Fs _{liq} - G	1.42	1.40	0.171 [1]				
Mean, µ	1.39	1.48	0.171				
S. deviation ^[1] σ	na	0.5	0.069				
Reliability β	na	0.97	1.026				
$P_f = \frac{N_f}{N}$	na	0.157	-				
$P_{f} = \Phi \ (-\beta)$	-	-	0.152				

Case A:

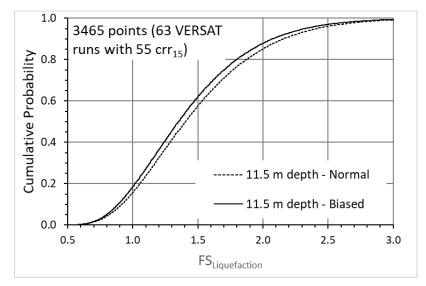
Comparison of results by Methods


- FS_{liq} Median _{50th-%tile} is more representative
- At 11.5 m depth, FS_{lig}=1.4
- $P_f = 0.157$ by sampling method _{3465-points} agreed with $P_f = 0.152$ by FORM method

Soil depth at 4.5 m	VERSAT N _{1.60} =24	Reliability Method _{sampling}
Median Fs _{liq}	1.94	1.92
Mean Fs_{liq} , μ	1.90	2.03
S. deviation ^[1] σ	na	0.69
Reliability $\boldsymbol{\beta}$	na	1.49
$P_f = \frac{N_f}{N}$	na	0.024
$P_{f} = \Phi \ (-\beta)$	-	-

^[1] Note:

 Reliability FORM result here is referenced to performance function G = crr₁₅ - csr₁₅ (G=0 is equivalent to conventional FS_{lia}=1



Effect of N_{1.60} data distribution

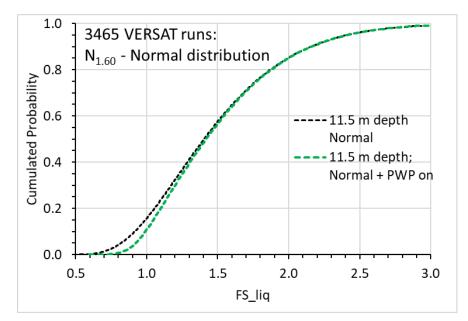
- A-set: Normal distribution, CDF = 28%
 for N_{1.60} ≤ 22
- B-set: Not normal; it has a biased distribution with CDF = 37% for N_{1.60} ≤ 22
 - Note: For B-set, N_{1.60} = 22 is often used in a deterministic analysis.

N _{1.60}	19	20	21	22	23	24	25	26	27	28	29	Σ
A. Normal												
Distribution	0.042	0.047	0.079	0.114	0.142	0.152	0.142	0.114	0.079	0.047	0.042	<u>1.00</u>
B. Biased												
Distribution	0.04	0.06	0.12	0.15	0.15	0.14	0.12	0.09	0.07	0.04	0.02	<u>1.00</u>

•

A-set

Soil depth at 11.5 m	VERSAT N _{1.60} =24 N1.60 A-set	Reliability Method _{sampling} N1.60 A-set
w. Median Fs _{liq}	1.42	1.40
w. Mean, μ	1.39	1.48
S. deviation $^{[1]}\sigma$	na	0.50
Reliability $\boldsymbol{\beta}$	na	0.97
$P_f = \frac{N_f}{N}$	na	0.157


Comparing results by N_{1.60} between A-set and B-set:

- There is a pronounced reduction in FS_{liq} from
 1.42 to 1.20 by deterministic VERSAT method
- N_{1.60} distribution has more impact on high FS_{liq} portion of the fragility curve; thus
 - FS_{liq} reduces from 1.40 to 1.35
 - P_f increases from 0.157 to 0.184

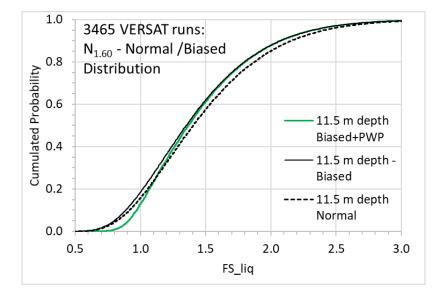
B-set

VERSAT N _{1.60} =22 N1.60 B-set	Reliability Method _{sampling} N1.60 B-set	
1.20	1.35	
1.18	1.43	
na	0.48	
na	0.90	
na	0.184	

Soil depth at 11.5 m	Reliability Method _{sampling} <mark>A-set</mark>	Reliability Method _{sampling} <mark>A-set</mark> & PWP-on
w. Median Fs _{liq}	1.40	1.42
S. deviation $^{\left[1\right] }\sigma$	0.5	0.47
Reliability β	0.97	1.08
$P_f = \frac{N_f}{N}$	0.157	0.108

3827th VGS Symposium 2021.5.28 by G Wu Part 4 -
Reliability of Soils against Lquefaction

Effective stress analysis including the effect of seismically induced pore water pressures on FS_{lig}:


- COV ≠ 0 (crr₁₅ are affected by csr₁₅)
- Required 3465 VERSAT dynamic analyses to generate the fragility curve
- 3465 runs completed in 2 days in a home PC
- Results compiled and plotted in 30 min using
 the Automation processor built in VERSAT

Effect of PWP on results N_{1.60} A-set

- Nearly no impact to high FS_{liq} (i.e., high N_{1.60}) portion of the fragility curve
- Consistent with expectations: more impact at where EQ shear force is near or exceeds the liquefaction resistance, i.e.,
- PWP effect has greater impact on probability of liquefaction, less on median FS_{liq}

Power smart

 Effect of PWP has reduced probability of liquefaction P_f to 0.108 from 0.157
 BC Hydro

Soil depth at 11.5 m	Median FS _{liq}	$\mathbf{P}_{\mathbf{f}} = \frac{N_f}{N}$	N _{1.60} Data
Reliability Method sampling	1.40	0.157	
+ PWP	1.42	0.108	A-set
Deterministic: N _{1.60} = 24	1.42	-	
Reliability Method sampling	1.35	0.184	
+ PWP	1.37	0.130	B-set
Deterministic: N _{1.60} = 22	1.20	-	

Summary results at 11.5 m depth for $N_{1.60}$ B-set :

- For the more realistic N_{1.60} distribution (in B-set), probability of liquefaction P_f increases to 0.184 from 0.157 for the Norm Distribution (in A-set)
- However, effect of PWP has reduced probability of liquefaction P_f from 0.184 to 0.130
- Reliability based analysis with PWP indicated P_f^{5000-yr} =0.130, i.e., annual P_{f-liquefaction} = 2.6 x 10⁻⁵
- USACE (1999) criterion:
 - P_f = 3.0x10⁻⁵ for good performance
 - P_f = 1.0x10⁻³ for above average performance

What is the acceptable annual P_{f_liquefaction} is a subject for further research !

 $P_{f_{liquefaction}}$ would be a more accurate (suitable) parameter for measuring the liquefaction potential than the conventional parameter FS_{liq}

* For FS_{Liq} changes from 1.35 to 1.37 (~ 1.5%),

P_f reduces much more significantly to 0.130 by 42% !

Reliability-based dynamic analyses for seismic design optimization in British Columbia

Conclusion Remarks (1)

- 1. Use of the PSPA approach can reduce the epistemic uncertainties when dealing with seismic hazard including both M9 Interface and M7 non-Interface earthquake sources
 - * Epistemic uncertainty (subjective uncertainty) characterizes the lack of knowledge, which is reducible uncertainty through increased understanding (research), or increased data, or through more relevant data; "human", "belief".
- 2. In the Lower Mainland: Don't use the UHS (such as Canada seismic hazard values from the <u>NRC website</u>) that include contributions from both the M7 and the M9 earthquake sources.
- For the design 1/2475-yr ground motions: Derive the source specific spectra, i.e., the 1/5000-yr spectra for subduction Interface EQ (~M9) and the 1/5000-yr spectra for non-Interface EQ (~M7) using OPENQUAKE
 - Don't only use 1/2475 spectra (Intf. and Non-Intf) for design . They are far less than the required EQ intensity.
- 4. Conduct analyses using ground motion records for the 1/5000-yr spectra (Intf. and Non-Intf.)
- 5. Do design using the higher demand from the two sets of results (Intf. Vs. Non-Intf). If necessary, conduct analyses for refinement using 1/2475-yr or 1/10,000-yr spectra (Intf. and Non-Intf.) (Wu 2018)

Reliability-based dynamic analyses for seismic design optimization in British Columbia

Conclusion Remarks (2)

- 6. Probability-based dynamic analyses (such as soil liquefaction potential assessment) provide a more accurate or representative solution
- 7. The efforts required for the probability-based analyses are well manageable even for engineering design. The Automation processor built in VERSAT provides the tool.
- 8. More works are required to
 - Tie the probability of liquefaction (P_{f-liquefaction}) with design requirement and hopefully built into a Design Guideline
 - P_{f-liquefaction} for Subduction Interface earthquake sources are needed to calculate the total P_{f-liquefaction}
 for a site. The work presented in this study is the 1st part of a more comprehensive study
 - P_{f-liquefaction} at other levels of ground motions are needed to produce a more complete fragility curve

Reliability-based dynamic analyses for seismic design optimization in British Columbia

Information: http://www.wutecgeo.com/versat-2d.aspx

PSPA for 1D liquefaction analysis, and more, **OPEN** and free for everyone

VERSAT-2D v.2019.10 ^(new) - OPEN standalone version (^{max. 1500 elements}) free for everyone

Note: Microsoft .Net Framework 2.0 or higher would meet the operation system (OS) requirements to run VERSAT-2D; Otherwise, your computer OS needs to install them, Download Microsoft .NET Framework Version 3.5 Now

- Free download VERSAT-2D OPEN 2019.10 click
- This version is capable of conducting probabilistic seismic performance analysis (PSPA).

Questions ?

